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ARTICLE INFO ABSTRACT

Monitoring agricultural land is important for understanding and managing food production, environmental
conservation efforts, and climate change. The United States Department of Agriculture's Cropland Data Layer
(CDL), an annual satellite imagery-derived land cover map, has been increasingly used for this application since
complete coverage of the conterminous United States became available in 2008. However, the CDL is designed
and produced with the intent of mapping annual land cover rather than tracking changes over time, and as a
result certain precautions are needed in multi-year change analyses to minimize error and misapplication. We
highlight scenarios that require special considerations, suggest solutions to key challenges, and propose a set of
recommended good practices and general guidelines for CDL-based land change estimation. We also characterize
a problematic issue of crop area underestimation bias within the CDL that needs to be accounted for and cor-
rected when calculating changes to crop and cropland areas. When used appropriately and in conjunction with
related information, the CDL is a valuable and effective tool for detecting diverse trends in agriculture. By
explicitly discussing the methods and techniques for post-classification measurement of land-cover and land-use
change using the CDL, we aim to further stimulate the discourse and continued development of suitable
methodologies. Recommendations generated here are intended specifically for the CDL but may be broadly
applicable to additional remotely-sensed land cover datasets including the National Land Cover Database
(NLCD), Moderate Resolution Imaging Spectroradiometer (MODIS)-based land cover products, and other re-
gional, national, and global land cover classification maps.
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1. Introduction typically upwards of 90% for major commodities like corn, cotton, rice,

soybeans, and wheat (USDA-NASS-RDD Spatial Analysis Research

Humans have altered earth's landscape more than any other species,
with agriculture representing the largest anthropogenic use of land area
(Foley et al., 2005; Ramankutty et al., 2008). As such, agricultural land
use and land-use change are widely recognized as key drivers of the
global environment (Tilman et al., 2001; Turner et al., 2007). Mon-
itoring changes to our agricultural landscapes is critically important for
understanding and managing food production, conservation, and cli-
mate change as well as informing and evaluating policies focused on
addressing these grand environmental challenges (Byerlee and Janvry,
2007).

In the United States, the Department of Agriculture’s (USDA)
Cropland Data Layer (CDL) provides an annual publicly available land
cover classification map tailored toward crop identification (Boryan
et al., 2011). Produced by the statistical arm of the USDA-the National
Agricultural Statistics Service (NASS)-the CDL covers the conterminous
48 states with field-level resolution and crop classification accuracies

Section, 2016). Compared to other sources of agricultural land use data,
including NASS’s 5-year epoch Census of Agriculture and annual
county-level surveys, the CDL’s spatially explicit identification of land
use and land cover makes it a particularly powerful tool for under-
standing and studying agricultural landscapes at fine detail.

Detecting landscape changes over time using the CDL has become
increasingly enabled as the program ages, creating a temporal archive
of annual data now spanning nine years nationwide and up to twenty
years for select states. The number of peer-reviewed journal articles
utilizing the CDL has also grown substantially following the release of
wall-to-wall US coverage beginning in 2008 (Fig. 1). This growth likely
stems from increased product availability and awareness, improved
accuracy and associated utility, and greater ease of use through in-
tegration with affiliated products, such as the CropScape online portal,
which allows users to perform online queries and simple analyses
without the need for a desktop geospatial program (Han et al., 2012).
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Fig. 1. Number of annual peer-reviewed journal articles or pub-
lished conference proceedings that utilized the CDL, relative to
2008 totals. Applications of the CDL in academic and industry re-

search have boomed since nationwide areal coverage began in 2008.
Citation counts retrieved from searching for publications with the

exact phrase “Cropland Data Layer” via Google Scholar, PubAg, and

Web of Science; number of publications in 2008 from each portal were
43, 3, and 10, respectively. Google Scholar and Web of Science indices
include all articles; PubAg is the portal to full-text journal articles

authored by USDA staff.
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However, with increased use and availability comes a need to de-
velop accompanying best practices. Thus far, there have been no re-
commended guidelines or suggestions for use of the CDL from either the
producers of the dataset or its user communities. As a result, a unique
method for processing and analyzing the CDL is typically developed for
each study or application. While this approach has led to a creative
divergence among scholars and practices, the inconsistency among
analyses limits practical comparisons and hinders successive building of
methodology. The lack of explicit discussion regarding methodologies
and best practices can also potentially propagate problematic ap-
proaches throughout the literature. In addition, methodologically un-
ique analyses of the same study region and timeframe can occasionally
produce widely different results and suggest conflicting conclusions
(Kline et al., 2013; Sahajpal et al., 2014; Wright and Wimberly, 2013a,
2013b). This variation—originating from processing decisions rather
than data discrepancies—can also falsely evoke uncertainty in the un-
derlying data, hindering policy and scientific applications from moving
forwards.

Here, we propose a set of recommended practices for utilizing the
CDL for studying land-use and land-cover change (LULCC). Because the
CDL is designed and produced with the intent of monitoring annual
land cover and not changes over time, these guidelines are particularly
geared towards multi-year change analyses, where additional precau-
tions are necessary to reduce the probability of error and misanalysis.
Many of the considerations and potential pitfalls we highlight, how-
ever, also apply to analyses based on a single year of data such as those
measuring future land availability or the geospatial distribution of ex-
isting crops.

We begin with an overview of the relevant methodology used in the
production of the CDL as well as a summary of its uses for measuring
LULCC reported in the literature. Subsequently, we provide a list of
cautions and associated techniques to mitigate some of the challenges
to measuring LULCC. We then detail a problematic issue of crop area
estimation bias in the underlying CDL data and outline multiple solu-
tions to correct for this bias. Lastly, we propose a set of additional re-
commendations to consider during any application of the CDL for
measuring LULCC. While the set of cautions and recommendations
provided here cannot address every situation that arises, we hope it
serves as a launching point for further discussion and common ground
from which to build and refine.

2. BACKGROUND & APPLICATIONS
2.1. CDL production

The CDL products are annually released each January with the
purpose of identifying crop-specific land cover circa mid-summer of the

previous year’s growing season. Non-crop areas are also identified but
with less specificity and concern over accuracy. Satellite imagery in-
puts, based on availability and cost effectiveness at the time, have in-
cluded the Resourcesat-1 Advanced Wide Field Sensor (AWIiFS),
Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced TM Plus (ETM
+ ), Landsat-8 Optical Land Imager (OLI), and Deimos-1 and UK-2 from
the Disaster Monitoring Constellation. The multispectral imagery is
classified by leveraging the USDA Farm Service Agency (FSA) crop
administrative database for the training and accuracy assessment of
crops, and the Multi-Resolution Land Characteristics (MRLC) con-
sortium’s National Land Cover Database (NLCD) for all other non-crop
classes. Note that the CDL does not simply revert to nor default to the
NLCD in areas of non-cropland, but rather incorporates NLCD in-
formation for non-cropland as training data into the CDL’s own, unique
classification decision tree. The processing is performed at a state-level
for all but the biggest and smallest states.

The first available US-wide product was released for year 2009
(Johnson and Mueller, 2010) with nationwide 2008 coverage com-
pleted retrospectively soon afterwards. Most state CDLs during these
two years were at 56 m resolution based on the native pixel size of the
AWIFS data, which was the primary input source. 2010 to present has
been consistently at Landsat’s 30 m resolution. For certain states, par-
ticularly those in the Corn Belt region, the CDL history goes farther back
in time with North Dakota being the most historical example having
started in 1997. States available 2005 and earlier were also generated at
30 m as Landsat imagery was the sole input source. A full listing of
years available by state are listed within the NASS CDL metadata
(USDA-NASS-RDD Spatial Analysis Research Section, 2016).

From that initial single state product two decades ago, the research
and development effort expanded organically and improved steadily to
what is considered state-of-the-art today. However, there are two no-
table eras to the underlying methodology (beyond the noted pixel size
differences). In 2005 and prior only two images (ideally early and late
in growing season) were used over a given pixel, training data was
limited to that manually collected and digitized by NASS, and the
classification was based on a maximum likelihood methodology. The
work from 2006 onward has instead relied on multiple images
throughout the season (and some even prior), the more encompassing
FSA and NLCD data for training, and an ensemble decision tree classi-
fication methodology. As a result, there is a significant change in look
and feel from 2005 to 2006 with the more contemporary products
considered more robust.

Lastly, it is worth noting that the primary goal of the CDL is, and
always has been, to provide supplemental information in helping cor-
roborate and refine NASS mainline crop area survey estimates through
a technique known as “regression estimation” (Battese et al., 1988). As
such, CDL-like products are generated and analyzed by NASS typically
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multiple times within the growing season with a sole focus on in-
tensively cropped regions. The final CDL land cover product that is
ultimately provided to the public is thus in some sense a byproduct of
the original area estimation work. Nonetheless, it is recognized by
NASS that the public CDL contains significant value for a broad host of
land cover applications, whether directed at agriculture or otherwise.

2.2. Applications and uses of the CDL for measuring LULCC

Typical studies utilizing the CDL in research range from static
characterization of current land cover to projections about future land
use, and most recently, analyses of changes over time. Mueller and
Harris (2013) provide a synopsis of the many reported ways in which
the CDL has been applied to date. Most analyses focus on agricultural
applications, but use has also spread to broader ecological, industrial,
and planning analyses, which draw upon the high spatial resolution and
land cover specificity provided by the CDL.

Agricultural LULCC studies utilizing the CDL can typically be
broken into two categories—descriptive studies and predictive (mod-
eling) studies. In descriptive studies, researchers frequently use the CDL
to observe, describe, or characterize recent or current conditions and
phenomena. In these applications, knowledge of existing agricultural
practices and LULCC pathways are often used to provide context and a
framework for understanding changes captured by the CDL. As such,
studies have typically focused on either recent crop rotations (Han
et al., 2013; Li et al., 2012; Long et al., 2014b, 2014a; Plourde et al.,
2013; Sahajpal et al., 2014) or land conversion (i.e. cropland expan-
sion/abandonment; Johnston, 2013, 2014; Lark et al., 2015; Wright
and Wimberly, 2013a). In addition, a number of descriptive studies
identify the current amount of land or crop resources available for a
particular application, such as biofuels production or crop residue re-
moval; however, many of these also serve as the input or basis for
subsequent predictive modeling studies (Rashford et al., 2013).

In predictive applications, data from the CDL are often in-
corporated into a larger modeling framework to understand the ef-
fects recent or hypothetical conditions or changes to the landscape or
environment may have on target metrics such as ecosystem services,
biodiversity, or land use. Many of these studies have focused on
bioenergy production potential or the effects of future bioenergy
scenarios (Elliott et al., 2014; Gelfand et al., 2013; Li et al., 2012,
2013; Meehan et al., 2010; Muth et al., 2013; Muth Jr. and Bryden,
2013). Rashford et al. (2013) provide a thorough overview of the

Table 1
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challenges in using CDL data for modeling purposes, particularly
regarding the conversion of grasslands (Rashford et al., 2013). Si-
milar to the limitations of the CDL for mapping LULCC that we dis-
cuss here, substantial considerations are necessary when using the
CDL as input for modeling endeavors.

3. General cautions for use

Certain precautions should be taken to help reduce the probability
of error in measuring LULCC using the CDL. A summary of common
tasks and challenges is presented in Table 1, with details and potential
solutions highlighted in the following subsections.

3.1. Land use, land cover, and grassland identification

Due to its reliance primarily on satellite-based data, the CDL is
generally unable to identify land use and instead provides indication of
land cover. In many ways, this can create challenges in comparing
aggregated CDL data to that of inventory data such as the Census of
Agriculture, which provides farmer-reported land use at county-level
resolution. For example, the CDL delineates forests by cover type (de-
ciduous, coniferous, or woody wetlands), whereas the Census of
Agriculture delineates forests by use (grazing or managed for timber). It
should be noted that through data fusion or dasymetric mapping ap-
proaches (Joshi et al., 2016; Monfreda et al., 2008; Ramankutty et al.,
2008), the CDL can be used in combination with other data to give more
spatially detailed insights into land use. Thus, while the CDL does not
natively provide information on land use, it can still be utilized in
analyses of land use and land-use change.

Similarly, the CDL has particular difficultly in accurately distin-
guishing between grassland types—e.g. native vs non-native—as well as
grassland use, such as pasture vs hay. Part of this difficulty stems from
the subtleties that exist across category types from a multispectral
imagery standpoint (Schuster et al., 2015), and additional challenges
stem from the inter-state inconsistences in how grass type crops are
reported within FSA data used for training. Thus, individual analysts
creating the CDL must decide how to use grass and pasture ground
reference data in their particular state, region, and year. As a result, this
can occasionally create observable differences across state boundaries
and years. NASS is currently spending effort to improve the grass ca-
tegories, which are typically seen as the weakest aspect of the product.
In the meantime, to better reflect the difficulty of distinguishing

Limitations of the USDA Cropland Data Layer for monitoring Land Cover and Land Use Change (LULCC). Presented is a list of common tasks performed during LULCC mapping,

descriptions of related capabilities and constraints, and an example of each situation.

Task Explanation of Limitation

CDL Example

Identifying land use

Distinguishing grassland
vegetation
uses.
Assessing area using direct pixel
counting
Measuring incremental or pixel-
level changes
boundaries.
Measuring changing field sizes or
other landscape metrics
many landscape metrics.
Directly comparing results across
multiple U.S. states
boundaries.
Measuring change between two
isolated points in time

Like many satellite-derived remotely sensed data, the CDL only identifies
land cover and does not provide information on land use.

Due to their spectral similarity during remote sensing classification, it is
difficult to accurately discern among various grassland vegetation types and

Because fields often do not align with pixels, there can be sub-pixel area
biases and adjustments required to measure acreage.

Resolution limitations (30 + m) hamper capturing small changes in area,
and annual edge effect can falsely suggest incremental changes along field

Improvements in the CDL classifications over time have reduced the
occurrence of within-field speckle and apparent heterogeneity, influencing

Independent processing and classification of the CDL for each state often
leads to inconsistencies across states, particularly noticeable along

Assessing change using a bi-temporal “snapshot” methodology (i.e. using
data only from the 2 years of interest without intermediate-year data) misses

Does not distinguish unmanaged forests from those used for
timber production or livestock grazing.

Cannot identify native vs. non-native vegetation, difficulty
discriminating pasture from hay.

In NASS’s use of the CDL for acreage estimations, a
regression-based pixel-area adjustment factor is used.
Rural roads are typically < 10 m wide, leading to
inconsistency in their mapping and that of the adjacent field
edges over time.

Fields previously mapped as a checkerboard of 2 crops
appear more homogeneous when correctly mapped as a
single crop.

The 2008 Kansas CDL classified almost all grassland as
pasture/hay, generating higher estimates compared to its
neighbors.

CropScape online portal’s web-enabled change analysis
feature.

crop and cropland rotations and can multiply errors in the original data.

Precludes temporal filtering.

226
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between types of grasslands and eliminate confusion among grass
classes, the 1997-2013 CDLs were recoded and re-released in January
2014 using a collapsed category of Grass/Pasture (class 176) to capture
all previous cover classes of Pasture/Grass (class 62), Grassland Her-
baceous (class 171), and Pasture/Hay (class 181).

3.2. Area estimation using direct pixel counting

Directly counting pixels can produce imprecise estimates of area due
to misclassifications as well as misalignment of field and pixel bound-
aries. As such, use of a pixel area adjustment factor may be required to
measure acreage and account for a frequent crop underestimation bias.
For NASS’s internal application of the CDL for area estimation of in-
dividual crops, the CDL is compared to a sampling of ground reference
data using a regression analysis to gain insights into the classification
bias. An area multiplier factor is then applied to each pixel to adjust its
acreage value. End users may be able to replicate this process by using
the published NASS statistics from the Survey or Acreage reports to
adjust individual CDL pixel values. Alternatively, using published NASS
statistics or other data sources to calibrate the change in acreage over
time may similarly correct for sub-pixel area and other biases (see
section 4 “Crop area bias and methods for correction”).

3.3. Measuring incremental changes, field size, and landscape ecology
metrics

Spatial resolution limitations generally prevent capturing the small
changes that occur at the boundaries of fields, such as when a fence,
hedgerow, or windbreak is added or removed or when a field in-
crementally expands or contracts in its margins. Similarly, the induced
edge effect that occurs from classifier uncertainty within mixed pixels
(those centered on a transition between two land cover types) can fal-
sely suggest incremental field contractions or expansions between
various years of the CDL when in fact no change in field size occurred.
As such, the CDL is more suited for detecting changes to whole fields or
large plots of land-where the area-to-perimeter ratio is max-
imized-rather than incremental changes in landscapes.

Improvements to the CDL’s methodology and accuracy over time
have also led to concomitant improvements in the homogeneity of
mapped fields. These improvements confound measuring changes to
many landscape ecology metrics and configuration indices using CDL
data. For example, because improved map consistency directly trans-
lates to decreased landscape diversity or heterogeneity, it can artifi-
cially give the appearance of increased patch sizes. If field size or other
landscape metrics are to be measured, a more robust methodology
should be used, such as one based on object recognition (Yan and Roy,
2016). In general, the CDL is best and most appropriately used for
contextual or field-level and larger analyses where differences in pixel
size, mixed pixels, and sub-pixel area issues become much less of a
concern.

3.4. Comparisons across dissimilar products (states and years)

In production of the annual CDLs, NASS independently processes
and classifies each state. Differences in the interpretation of remotely
sensed image signatures and use of training data across states can lead
to certain inconsistencies that are particularly noticeable along borders.
This effect is most easily observed in the previously distinct (but now
aggregated) grassland categories, but differences exist across crop and
other non-crop classes as well. To help mitigate the issue, each state
classification draws upon a certain level of reference data from outside
the state’s border; however, some residual state-to-state variation often
remains.

Similarly, each year of each state’s CDL is independently classified
without reference to previous-year data. This differentiates the CDL
from linked land cover classification products such as the National Land

Int J Appl Earth Obs Geoinformation 62 (2017) 224-235

Cover Database, which instead generates updated classifications in re-
ference to a base year. Advantages of annually-independent products
like the CDL are that they better facilitate methodological changes and
product improvements each year and avoid propagating potential er-
rors temporally throughout multiple years of a dependent product. As a
tradeoff, however, annual independence generates challenges for
measuring changes across time, necessitating many of the additional
precautions described here.

The effects of independence are especially salient when comparing
across years that use dissimilar input data, since these products may
exhibit additional differences including spatial and spectral resolution.
In general, direct comparison across CDLs of different resolutions
should be avoided or specially addressed to account for the change. If
necessary, reclassification of 56- and 30-m CDLs should be resampled to
the lower resolution raster. Results of the resampling should be closely
inspected for any artifacts from the original resolution difference, and
these artificial signals should be addressed or explicitly accounted for.
Data along the edges of same-class pixel blocks or polygon-like features
(e.g. field edges) and linear features (e.g. roads) are particularly sus-
ceptible to distortion or errors during resolution transformation. As a
collective result of the spatial and temporal independence of each state
CDL product, exceptional care should be taken in all multi-state or
multi-year analyses to identify any larger issues and anomalies to en-
sure consistency of the analysis and continuity of the final product.

3.5. Bi-temporal change analyses

Analyses that directly compare two isolated points in time and that
take a bi-temporal “snapshot” of change-without considering data from
the intermediate years—should be used with strong caution. Due to the
amount of noise and uncertainty in a single year of CDL classifications,
these snapshot difference analyses often falsely elevate apparent change
by multiplying the error found in each annual CDL layer. Furthermore,
excluding intermediate-year data precludes the use of temporal filtering
and reclassification techniques that can aid the identification and cor-
rection of misclassifications.

In spite of these limitations, straightforward snapshot-style or
“naive” change assessments can be useful for quickly screening research
questions and identifying trends for further investigation without in-
vesting substantial time or processing into the effort. To facilitate these
rapid inquiries, the CropScape web portal includes a change analysis
feature that makes this bi-temporal snapshot approach widely acces-
sible to novice and expert users alike (Han et al., 2012). However, if
change is to be measured on a more robust level, the methodology
should include both spatial and temporal approaches to correcting for
likely misclassifications, as well as additional time-series consideration
of how year-to-year variations in rotations among crops or between
cropland and pasture can influence results.

4. Crop area bias and methods for correction

In pursuit of continuous product improvement, the accuracy of the
CDL has continuously increased over time (USDA-NASS-RDD Spatial
Analysis Research Section, 2016). Concomitantly there have been
changes to the level of bias (over- or under-mapping) with which the
CDL identifies total cropland extent. Historically, the CDL under-pre-
dicted total cultivated area relative to its reference data, however the
magnitude of underprediction has lessened over time. As a result, un-
adjusted estimates of total cropland area based on the CDL alone sug-
gest a substantially greater increase in total cropped area over time
compared to other data sources (Fig. 2). In this section we characterize
the identified crop underestimation bias and its change over time and
outline a number of approaches to mitigate the issue.
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4.1. Characterizing bias in the CDL

The bias of a remote sensing product gives an indication of the
product's tendency to under- or over-map area of a specific class com-
pared to reality. Estimates of a product's bias can be derived from
published accuracy statistics and calculated as negative one plus the
ratio of producer's to user's accuracy (Olofsson et al., 2013). If point-
level results of an accuracy assessment are available, this statistic is
equivalent to the number of sample points mapped as a given class
divided by the number of sample points identified as the given class in
the reference data. For the CDL, accuracy-derived biases are available
for each class by state in tables available online (USDA-NASS-RDD
Spatial Analysis Research Section, 2016).

To understand the collective bias of the CDL and how it has changed
over time, we estimated the nationwide cropland over- or under-map-
ping for each year by calculating a weighted average across all crops
accounting for differences in area of each class and each state. To
compute this, we first multiplied the state-level bias for each specific
class by the area of that class in that state. This result was subsequently
summed for all states and divided by the total nationwide class area to
estimate the national-level bias for each specific crop. A single con-
solidated cropland bias was then estimated by area-weighting each
crop's specific bias by the crop's proportional contribution to total
cropland area, defined according to the crop/non-crop categorization
listed in Appendix A. Results for the estimated nationwide bias for total
cropland 2008-2012 are shown in Table 2 below.

The negative bias value for total cropland signifies that the CDL
generally undermaps cultivated area relative to its reference data, pri-
marily from FSA (USDA-NASS-RDD Spatial Analysis Research Section,
2016). The reduction in magnitude of the bias over time suggests that
the undermapping or amount of missed cropland has continuously de-
creased. This trend can skew results when trying to quantify or detect
specific LULCC, and is likely to manifest as an exaggerated signal of
cropland expansion. The issue can be mitigated, however, by a number
of approaches including use of ancillary data from sources like the
annual NASS Surveys, the NLCD, or published CDL accuracy statistics,
as described below.

Table 2

Nationwide cropland area estimation bias of the CDL. Table reports the tendency of
the CDL to generally underestimate (negative bias value) total crop area at the national
level. The reduction in bias over time suggests more complete capturing of total cultivated
extent each year, which can falsely indicate cropland expansion if not corrected. Data
based on CDL accuracy statistics (USDA-NASS-RDD Spatial Analysis Research Section,
2016) consolidated across all crops using the crop/non-crop categorization listed in
Appendix A.

Year 2008 2009 2010 2011 2012

Cropland Estimation Bias —2.22% —2.08% —-1.73% —-1.66% —1.29%

~—+—Census of

=o—NRI
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Fig. 2. Total cropland over time based on uncorrected CDL
compared to other datasets. If not addressed, the CDL’s tendency to
increasingly capture cropland over time can skew change analyses
towards crop and cropland expansion. Using a cultivated layer mask
(e.g. CDL + NLCD mask, see section 4.4) or calibrating with external
data (e.g. NRI data, see section 4.2) offer two methods to help correct
for this issue.

Agriculture

CDL + NLCD mask

=== CDL

—m—Lark et al. (2015)
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4.2. Calibrating pixel-area values with independent data

One way to correct for the bias and the reduction in bias over time is
to calibrate the area (or area of change) with published crop area es-
timates from NASS or other data sources. In this approach, the area
value of individual pixels should be adjusted so that when totaled they
agree with county- or state-level published statistics, such as those in
the USDA Acreage reports. For example, if corn area is undermapped in
the CDL by 20% in a given county, the area value of each pixel of corn
in that county could be upward adjusted accordingly (in this case di-
vided by 0.8), such that a single 30 m x 30 m resolution pixel of corn
would receive an updated area value of 1125 m? instead of 900 m>. The
calibration is most straightforward when done for a single crop, such as
corn, but can also be used for a combination of crops or total cropland if
care is taken to assure that definitions and included crops are aligned
between data sources. This approach is similar to the regression ad-
justments used by NASS when making official crop area estimates based
on the CDL (USDA NASS, 2012; USDA-NASS-RDD Spatial Analysis
Research Section, 2016).

Referencing user and producer accuracy data for each class or group
of classes can provide an alternative indication of the areal biases and
associated method for correction (Olofsson et al., 2013; Stehman,
2013). The bias for any specific class or combination of classes can be
derived using the reported state-level crop accuracy rates from the CDL
metadata or the published error supermatrices (USDA-NASS-RDD
Spatial Analysis Research Section, 2016). Multiplying the calculated
bias by the class area provides an estimate of the total area of over- or
under-mapping by the CDL, which in turn can be used to derive an
adjusted estimate of total area for the given class. If pixel-level cor-
rection is desired, these bias-adjusted estimates of class area can be
used analogously to the NASS statistics in the previous paragraph to
calibrate the area value of each individual pixel.

The pixel-level calibration techniques are most appropriate when
pixel-level adjustments are made to individual years. However, this can
create difficulties for assessing change if a given pixel is assigned dif-
ferent adjusted values across different years. For example, if a pixel
with a native area value of 900 m? is adjusted to be worth 800 m? in
year one and 850 m? in year two and the pixel underwent a class
change between years one and two, it is not immediately clear whether
the area of change should equal 800 m?, 850 m?, or some intermediate
value.

In such cases, the amount of change between years in the CDL can be
calibrated with the change in area derived from either published NASS
estimates, the bias-adjusted area estimates from the CDL, or other
sources of land change data like the National Resources Inventory (NRI;
USDA, 2015). Calibrating the area of change across CDL years is ad-
mittedly less desirable than independently adjusting pixel area values
for each year and then measuring change because the former accounts
for discrepancies across the reference data’s entire administrative
boundary using only a select subset of the mapped class (the changed
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pixels) as opposed to distributing the bias adjustment across all pixels of
the mapped class (the changed and unchanged pixels). Nonetheless, this
approach is likely preferable to no adjustment at all, and will result in
an estimate of change in line with the reference data and that is not
conflated by improvements to the CDL over time.

4.3. Integrating spatial variation in uncertainty

One extension to the uniform pixel-area value adjustment technique
is to incorporate information from the CDL confidence layers to identify
which pixels are most likely incorrect and reclassify or adjust only those
pixels accordingly, rather than uniformly debiasing. The CDL con-
fidence layers are ancillary data provided by USDA NASS that provide a
measure of how well a specific pixel fit within the decision tree ruleset
used to classify it (Liu et al., 2004; USDA-NASS-RDD Spatial Analysis
Research Section, 2016). Thus, the confidence layer gives an indication
of the spatial variation of uncertainty within each CDL class.

Given a known amount of over- or under-mapping of a specific class
within an administrative boundary (e.g. county or state), one can use
the confidence layers to identify the pixels that were mapped with
greatest uncertainty and replace those pixels with an appropriate
countervailing classification such that the new summed totals equal the
independent data. This approach is feasible when the data of interest
are a binary choice (e.g. corn and not corn; or cropland and noncrop-
land). However, if a complete accounting of the landscape is required
and there exists more than two map classes, it becomes unclear to
which class the uncertain pixels should be reclassified. In this case, one
could imagine a hybrid approach where the area-value of pixels are
adjusted in the manner of 4.2 but done so proportional to the un-
certainty in each pixel, rather than uniformly across all pixels of a class.

4.4. Using a cultivated layer mask

An alternative method for addressing the CDL’s improvement in
capturing cropland over time is to use additional remote sensing-based
data to identify cropland that was likely missed in early years. The
MLRC’s NLCD product is especially well-suited for this task as it pro-
vides coverage for the complete U.S. dating back to 1992 and boasts the
same 30 m resolution as recent CDL years. In this approach, cultivated
cropland extent from the NLCD or other products can be used to
identify the footprint of total cropland in given years and flag areas
likely to have been cultivated but not captured by one of the CDL’s crop
classes. A drawback of using the NLCD or most other products is that
the crop specificity of the CDL is lost. However, the approach is effec-
tive for studies where the data of interest are total cropland or another
broad land cover class. As always, adequate attention should be given
to classification categories and definitions of the additional data to
ensure a good fit between sources.

An example of this approach can be seen in the recent analysis of
cropland expansion by Lark et al. (2015), where data on cultivated
cropland from the 2001 and 2006 NLCD was used to identify areas
likely to have been previously cropped but not captured by the CDL in
its early years of full continental coverage (Lark et al., 2015). Results
from this analysis, which also included additional corrections and ad-
justments, are graphed for reference in Fig. 2 along with an example
isolating the impact of the cultivated layer mask (Fig. 2; CDL + NLCD
mask). For the latter example, the amount of cropland at each time step
was derived from the union of the NLCD 2006 cultivated crops footprint
and the CDL cropland footprint for each year, using the same definition
for cropland as Appendix A.

5. Recommendations for best practices
We next describe a set of additional recommendations to consider

during application of the CDL for mapping LULCC (Table 3). Adhering
to these broad guidelines while incorporating the previous cautions and
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cures will generally enhance the utility, accuracy, and consistency of
analyses. Organized loosely by change detection processing steps, these
guidelines are intended to provide starting advice on processing deci-
sions that should ultimately be tailored for each specific analysis.

5.1. Combine classes

Consolidating the original 100+ raster classifications of the CDL
into aggregated categories can significantly improve the accuracy of
assessments by eliminating misclassification errors within the com-
bined classes. This approach can be applied to both crop and non-crop
categories, and is especially applicable for land covers in which the CDL
has lower identification accuracies. In particular, all grassland classes
should regularly be combined due to the inability to adequately discern
grass-based pasture, hay, and non-agricultural uses. To this extent, the
CDL has recently internalized this measure and retroactively combined
all grassland-dominated covers into a single category to represent
grassland/pasture.

Class consolidation is also effective for combining crop categories,
where the approach reduces the effects of classifier confusion among
the many crop classes, which may exhibit spectral similarities. As ex-
ample, Table 4 shows the improvements in accuracy resulting from
consolidation of the corn and soy classes in the 2012 South Dakota CDL.
Similarly, consolidating all non-crop covers results in substantial ac-
curacy improvement via elimination of misclassification between the
non-crop classes.

CDL class consolidation is particularly useful for mapping total
cropland extent (Johnson, 2013) and changes to cropland area or land
conversions (Lark et al., 2015), as well as for facilitating comparisons
with other datasets such as the NLCD. The collapsed classes can also
subsequently be disaggregated after initial detection of land cover
changes in order to benefit from improved change detection accuracy
while retaining the original crop specificity of the CDL (Lark et al.,
2015)

5.2. Utilize all available data

For studies analyzing changes over time, all data throughout time
should be considered. For example, a study assessing changes between
2000 and 2004 should include the intermediate years of 2001, 2002,
and 2003 as well as the endpoints in order to understand the full
“trajectory” of land cover during the study period and take advantage of
all available data. Studies of crop rotations inherently incorporate this
practice; studies on land conversion, on the other hand, typically do
not. By considering the full trajectories of land cover over time, it is
possible to better characterize and differentiate change. The additional
temporal information can be used in temporal filtering to help identify
likely classification errors (Lark et al., 2015), and can also be used to
help identify and delineate fields, since pixels of a given field tend to
rotate crops in unison (Sahajpal et al., 2014; Yan and Roy, 2014).

Similar to using all available years of the CDL, ancillary data should
be used wherever available. In this sense, the CDL can be used as “one
of many” data sources. As shown in section 4.1 regarding the cropland
underestimation bias in early CDL years, use of a single data source can
potentially be problematic. Where available, additional data sources
should be used in combination with or as validation for analyses based
on the CDL. Other U.S. datasets that may prove useful include the
USDA’s Census of Agriculture (NASS, 2014), USDA NASS Survey data
(NASS, 2016), the National Land Cover Database (Homer et al., 2015),
the LandFIRE datasets (Zahn, 2015), and the NRCS’s National Re-
sources Inventory (NRI) (USDA, 2015).

The USDA’s Census of Agriculture is frequently considered the best
available “truth” for land use (Johnson, 2013), though its 5-year fre-
quency can often limit its utility for direct comparison with CDL-based
studies. NASS Survey statistics, which provide annual county-level data
on crop area, can be valuable but should be closely interpreted to
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Table 3
Summary of recommended practices for measuring LULCC using the CDL.
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Recommendation Details

Benefit Example References

Combine classes Reclassify all grassland classes, frequently rotated
crops like corn and soy, or all crops into a single

combined category where appropriate.

Adjust for areal biases Use ancillary dataset or a regression estimator to

correct for frequent crop underestimation bias.
Utilize all temporal data When measuring changes over time, all available
data should be used, including intermediate years.

Integrate multiple datasets Use additional remote sensing or ground-based
data sources in combination with the CDL to
measure LULCC.

Match change detection size to expected range of
plausible changes.

Use field segmentation, a Minimum Mapping Unit
(MMU), or spatial filtering to remove likely
misclassifications.

Establish Minimum/Maximum
Unit of Change (MUC)

Undertake post-classification
processing

Verify with independent data Use published USDA statistics or other
authoritative data to aid selection of processing

and assessment methodology.

Perform an accuracy assessment Use confirmed ground data or high resolution
aerial photography to conduct a site-specific

accuracy assessment

Reduces errors distinguishing among spectrally- (Johnson, 2013)

similar land cover classes.

(Johnston, 2013)

(Wright and Wimberly, 2013a)
Reduces false signals and exacerbated change areas (Johnson, 2013)
due to CDL product improvement over time.

(Lark et al., 2015)
Allows temporal classification and temporal (Plourde et al., 2013)
filtering of likely misclassifications. Aids field
boundary identification.

(Johnston, 2014)

(Sahajpal et al., 2014)

(Lark et al., 2015)
Improves confidence of findings, enables (Lark et al., 2015)

correction of individual product biases.

Reduces mapping of spurious change. Improved
signal to noise ratio.

Improves consistency between map representation
and reality (fields, etc.). Reduces speckle. Better
alignment with CDL capabilities (when use MMU).

(Cox and Rundquist, 2013)

(Yan and Roy, 2014)

(Lark et al., 2015)
(Mladenoff et al., 2016)
Improves selection of post-classification processing (Johnson, 2013)

techniques. Corroborates findings.

(Plourde et al., 2013)
(Sahajpal et al., 2014)
(Lark et al., 2015)
Provides insights into the correctness of the change (Reitsma et al., 2015)
product. Allows calculating bias-adjusted estimates
of areas of change.

(Wright et al., 2017)

Table 4

Example state level accuracies for individual and consolidated classes in the 2012
South Dakota CDL. Table shows the producer's and user's accuracies for example in-
dividual crop and non-crop classes used in the CDL, as well as the improved accuracies
resulting from consolidating similar land covers into aggregate classes. All non-crop
covers consolidated according to the table in Appendix A.

CDL Class Producer's Accuracy User's Accuracy
Corn 94.73% 93.47%
Soy 94.32% 94.59%
Consolidated Corn/Soy 97.50% 96.87%
Other Hay/Non Alfalfa 53.07% 33.75%
Grassland/Pasture 86.12% 38.55%
All non-crop covers consolidated 99.20% 98.58%

ensure double cropped areas and definitional issues surrounding total
cropland, principle crops, planted area and harvested area do not
confound comparisons between survey acreage data and that of the CDL
(Laingen, 2015). County-level FSA data on program crop acreage, col-
lected as a producer requirement to receive federal assistance, can be
useful as an additional reference point with the caveat that it is con-
sidered a “floor” value, since crops from producers not participating in
an FSA program are excluded. Plot level FSA data from the Common
Land Unit (CLU) would allow the most explicit comparison of LULCC
analysis results; however, the FSA CLU is held confidentially and, si-
milarly, by itself is not an exhaustive tabulation of crop area.
Comparisons to other satellite-derived data, such as the NLCD or
even MODIS-derived land cover products like MCD12Q1 (Friedl et al.,
2010) can be fruitful for identifying areas of bias in each product;
however, users should be aware that problematic areas may be subject
to the same trends or misclassifications. The NRI provides an in-
dependent ground-based dataset for comparison, but is only produced
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periodically, typically every 5 years. Based on statistical area sampling
as opposed to full areal coverage, it is most applicable for bench-
marking state and national levels of gross land conversion. Certainty of
analyses can also be improved when the CDL is used in combination
with ground-based or aerial photography such as the USDA’s National
Agricultural Imagery Program (NAIP).

5.3. Use a minimum/maximum unit of change (MUC)

A Minimum and/or Maximum Unit of Change (MUC) can help im-
prove the certainty of mapped changes by limiting allowed changes to
those which match the biophysical, legal, or socially-expected size of
the phenomenon being observed. For example, most crops in the U.S.
are not rotated or converted as single sub-acre pixel-sized units, but
rather operate on the scale of whole fields. Thus, in studies of agri-
cultural land conversion and crop rotations, matching the size of al-
lowable change with operable unit sizes can help remove spurious
signals arising from classifier uncertainty and misclassifications.

Median field size in the U.S. is 58 acres, with 75% of fields at least
29 acres in size as of 2011 (White and Roy, 2015). Thus, a MUC of 5, 10,
or even 15 acres is likely to capture most valid changes to whole fields.
When choosing the size of a MUC, it should be noted that the certainty
of identified change typically improves as the MUC size increases, re-
sulting in a lower commission error. However, the risk of omission rises.
Use of a large MUC (and thus high threshold for change) can therefore
be implemented when certainty of identified observations is more im-
perative than capturing all potential changes.

5.4. Post-classification processing

Post-classification user modifications to the CDL such as spatial
filters, minimum mapping units (MMUs), and field segmentation can
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help clean up apparent misclassifications in the raw data, especially in
older years of the CDL. We do not propose a single best post-processing
filter or refinement method; it is likely that no such universal best ap-
proach exists. Rather, each analyst should individually select the post-
classification processing that produces results most appropriate for the
analysis at hand.

To identify a suitable approach a variety of post-processing methods
and parameters should be trialed (Table 5) and these should be tested
against a set of reference data as well as visually inspected for their
impact on mapping the landscape. For spatial filters—a common post-
processing technique-parameters to explore include the size and type of
spatial filter, applying the filter before or after measuring change (i.e.
on the input vs the output), and applying the filter at the original
thematic resolution or upon consolidated classes. Minimum mapping
units (MMUs) provide an additional refinement mechanism particularly
useful for removing small features on the landscape that can be chal-
lenging to distinguish or measure when changed. Similar options to
investigate for MMU parameters include the size, number of neighbors
considered in defining the size, and method for replacing removed
pixels.

Table 5

List of common post-processing methods and considerations. Multiple techniques,
parameters, and their permutations should be investigated to identify the most appro-
priate approach for mapping the desired LULCC phenomenon.

Post-processing technique Parameters to consider

Spatial Filter Size (e.g. 3 X 3,5 X 5)

Type (e.g. contiguous majority or moving window)
Shape (e.g. square, radius)

Number of neighbors (e.g. 4 or 8)

Replacement threshold (e.g. half or majority)

Size (e.g. 10 or 20 pixel)

Number of neighbors (e.g. 4 or 8)

Replacement method (e.g. nearest neighbor or
majority class within a moving window)

Input data (e.g. CLU boundary polygons or satellite
imagery)

Fill method (e.g. majority or center-of-field)

Minimum Mapping Unit

Field Segmentation

Similar to the selection of a MUC, the size and effects of post-clas-
sification processing adjustments should match the expected operable
units of the study area and land cover or crop under consideration. For
example in highly heterogeneous landscapes, smaller filter and MMU
sizes may be needed in order to appropriately capture landscape fea-
tures, whereas regions with primarily large, whole-field LULCC can take
advantage of larger processing unit sizes (Mladenoff et al., 2016).

The strength of processing techniques and parameters should also
be based on the level of expected error in the input data. In general,
older CDL years will command larger MMUs and/or more aggressive
filters or filling of segmented fields. For example, in Florida, a 20 acre
MMU was found to produce the best results in 2004 (Boryan et al.,
2011). In contrast, recent CDLs have progressed to the point where a
3 x 3 filter or one hectare MMU may suffice, or may not even be ne-
cessary. An additional method for refining classifications involves
creating field segmentations from original Landsat imagery (Maxwell
and Craig, 2008; Yan and Roy, 2014) or administrative field boundary
data and spatially filling the segments with the majority or centroid
CDL crop class.

5.5. Verify with independent data and assess the accuracy

Independent land change data can provide a helpful point of com-
parison to assess the effects of processing choices on measured change
and aid in selection of post-processing techniques. Many of the datasets
listed in section 5.2 provide info on net or gross land change at the
county-level, and these counts can be charted against the outputs from
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different CDL-based change algorithms to identify overall congruence
between the datasets as well as outliers, which can indicate locations of
potential error in the original CDL time series data or the selected post-
classification processing techniques.

While comparisons to other estimates of change can provide quick
feedback for refining change detection algorithms and corroborating
results, they are not sufficient for ensuring an accurate product.
Aggregated amounts of change (e.g. at the county level) identified by
CDL-based analyses can produce correct estimates of changed area
while not correctly identifying locations of change on the landscape.
Thus it is important to conduct additional verification of any LULCC
product, which should include both visual inspection and site-specific
accuracy assessment. In addition to quantifying the uncertainty asso-
ciated with the product, a complete accuracy assessment can facilitate
calculating error-adjusted estimates of total change area (Olofsson
et al., 2013; Stehman, 2013)

As a related consideration, known error rates in the CDL (provided
in the metadata) are frequently greater than the amount of land cover
change intended for measurement. Thus, it is often a great challenge to
pull out what is subtle actual change from within the inherent CDL
noise. The cautions and recommendations presented here can help re-
searchers overcome this challenge. However, even the most careful
assessment of the CDL should be accompanied by comparison to other
sources and at least some level of site-specific accuracy assessment to
ensure adequate detection of the signal and minimization of noise.

6. Discussion
6.1. Impact of recommended practices on observed LULCC

Different practices for measuring LULCC can often produce sub-
stantial differences in resulting estimates of change. To illustrate this
impact we consider the results from a recent analysis implementing
some of the recommended practices with that of a naive, bi-temporal
snapshot approach which does not. As one example of the former, Lark
et al. (2015) measure total land conversion to and from cropland in the
conterminous U.S. 2008 through 2012 and utilize a subset of re-
commendations including class consolidation, integration of multiple
datasets, temporal and spatial post-classification processing, and cor-
rection for changes in spatial and thematic resolution in the CDL over
time.

Using their approach, Lark et al. estimated gross levels of cropland
expansion and abandonment from 2008 to 2012 of 7.3 million acres
and 4.3 million acres, respectively, for a net increase in cropland area of
3.0 million acres. In contrast, an analogous snapshot approach using the
CDL and directly comparing cropland in 2008 to 2012 would suggest
63.6 million acres of expansion and 28.6 million acres of abandonment,
for a net gain of 35.0 million acres-nearly twelve times greater net
expansion than the example analysis utilizing recommended practices.

Nationally-aggregated and county-level assessment of the example
results using recommended practices aligned well with other published
estimates of gross and net conversion including those from the USDA
Census of Agriculture and the NRCS National Resources
Inventory—often considered the “gold standards” for measuring crop-
land change (Johnson, 2013; Laingen, 2015; Lark et al., 2015). How-
ever, while this alignment suggests the possibility of improved change
detection, processing decisions can often produce correct results for
incorrect reasons, particularly when aggregated. Though not included
in the original publication, results of a follow-up site-specific accuracy
assessment of the Lark et al., 2015 data showed an overall map accu-
racy of 97.7% (Wright et al., 2017). Alternatively, the naive change
assessment using the same consolidated CDL classes but no additional
recommendations generates an expected 91.78% overall accuracy for
the change product. Thus, the subset of additional recommended
practices used by Lark et al. resulted in an estimated 72% (3.5x) re-
duction in overall map error. See Appendix B for details.
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The effects of using the recommended practices and improvements
can be further observed by visually investigating the differences in
mapped LULCC at the field level. For example, Fig. 3a shows a snapshot
of recent cropland expansion identified using the recommended prac-
tices from the example above. In contrast, Fig. 3b identifies cropland
expansion using the naive change assessment 2008-2012 using the
same CDL input but without additional considerations. In general, the
LULCC identified using the refined approach more closely matches
landscape features (e.g. fields) and reduces the mapping of artifacts that
frequently result from mixed pixels, misclassifications, and resolution
changes in the input data.

6.2. Additional applications and alternative approaches to measuring
change

The guidelines developed here were targeted for analyses of change
over time, but may be relevant to many analyses and applications for
which the CDL or other land cover maps are an input. For example,
those looking to map land availability or model the spatial variation of
ecosystem services would benefit from ensuring that their single-year
CDL input is free from state-level artifacts, crop area biases, or over-
extending the CDL's capability in identifying grassland vegetation type
or use. Any efforts to model environmental impacts or outcomes over
time using the CDL as input should similarly consider how the cautions
described here may influence results, particularly with respect to the
change in mapped bias of total cropland area.

Though developed specifically for the USDA CDL, this set of cau-
tions and recommendations might also serve as a guide to improving
post-classification land change detection using remote sensing products
in general. Other land cover maps to which the practices may be
especially applicable include historic instances of the MLRC’s National
Land Cover Database (NLCD), the USDA Forest Service and Department
of Interior's LandFIRE datasets, the USGS GAP analysis products, and
other land cover classification maps such as those based on Moderate
Resolution Imaging Spectroradiometer (MODIS) data.

Lastly, it should be noted that using a remote sensing product such
as the CDL for post-classification measurement of changes to land cover
and land use may not be as ideal as detecting changes directly from
unclassified satellite imagery over the same time period. However,
controlling for the dynamic nature of croplands can often confound
other change detection methodologies, and most of these change as-
sessments are unable to achieve the crop-specific detail of the CDL.

Appendix A. Consolidated crop and non-crop class membership
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Fig. 3. Landscape-level impacts of recommended
practices. Maps show recent LULCC in Potter
County, SD, identified using a subset of the re-
commended practices from Lark et al. (2015) (a)
versus that identified using a simple snapshot change
analysis (b). Areas in red are those identified as
conversion from noncropland to cropland and are
overlaid on basemap imagery from ArcGIS online.
Use of the recommended practices can help identify
field-level features with greater uniformity and re-
duces the mapping of artifacts resulting from mixed
pixels, misclassifications, and resolution changes in
the input data, particularly noticeable along field
edges and roads in 3b. (For interpretation of the re-
ferences to colour in this figure legend, the reader is
referred to the web version of this article.)

More importantly, the time and resources required to perform such
analyses on state and national scales is often prohibitive. In direct
contrast, many environmental and policy-relevant issues frequently
demand immediate attention and thus necessitate measuring change
using the best available land cover classification product. As it stands,
the CDL is the only annual, national-level, and timely-produced dataset
that can deliver on these needs, and it does so on a continuously im-
proving basis (Johnson, 2013; Wright and Wimberly, 2013b).

6.3. Summary and conclusions

Use of the CDL for measuring LULCC is on the rise, but there has
thus far been limited guidance regarding appropriate methods and best
practices. This has led to uncertainty among potential users, dissonance
across applications in the literature, and hindrance of successive
methods development. To address this knowledge gap, we drew from
published analyses, user and producer experiences, and demonstrative
examples to produce an initial list of cautions and recommendations,
resulting in best practices guidance for future assessments and a col-
lective basis for continued methodological development.

We found substantial opportunities for potential error in analysis
when using the CDL, but that optimistically most obstacles can be
adequately overcome by using appropriate caution. A prolific and
perhaps the most significant source of error in CDL-based LULCC ana-
lyses is failure to account for crop area estimation bias and changes to
the bias over time. However, even this challenge can be addressed by
calibrating or correcting the CDL with ancillary data. When used ap-
propriately and in conjunction with related information, the CDL is a
valuable and effective tool for detecting diverse trends in agriculture.
Adding knowledge of the common pitfalls and recommended practices
presented here can help users create more reliable post-classification
measures of LULCC, thus further enabling critical analyses that improve
our ability to understand agriculture and successfully navigate rising
environmental challenges.
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Johnson (2013). For the calculation of total cropland bias in Section 4.1, fallow/idle (class 61) was withheld from the cropland domain due to the
ambiguous cultivated/uncultivated nature of this class in historic CDL years as well as to maintain consistency with other analyses (e.g. Lark et al.,
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2015, Wright and Wimberly, 2013). Note that in more recent years of the CDL, however, the fallow/idle class has shifted in intent towards capturing
only actively cultivated fallow land.
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Appendix B. Accuracy of Lark et al. (2015) versus a bi-temporal snapshot of change 2008-2012

A site-specific accuracy assessment of Lark et al. (2015) was recently performed using high-resolution aerial photography from the National
Agricultural Imagery Program (Wright et al., 2017). Results showed relatively high and balanced user and producer accuracies for most categories
with the exception of cropland abandonment, which had a high producer’s accuracy but low user’s accuracy. This ratio suggests substantial over-
mapping of abandoned cropland area, which was likely a result of some abandoned locations becoming recultivated in subsequent years, as
identified by aerial imagery at the time of the accuracy assessment. Overall accuracy for the 2008-2012 change product was estimated at 97.7%.

LULCC Class Producer’s Accuracy User’s Accuracy Bias
Non-cropland 99.6% 98.0% 2%
Cropland 88.6% 98.0% —-10%
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Expansion 72.7%
Abandonment 97.5%
Overall Accuracy 97.7%
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70.4%
43.2%

3%
125%

For comparison, the overall accuracy of a land change map based on two annual land cover maps can be estimated as the overall accuracy of the
image from year 1 multiplied by the overall accuracy of the image from year 2 (Congalton and Green, 2008). For a naive bi-temporal snapshot of
change between cropland and noncropland using consolidated CDLs that have crop vs non-crop accuracies of 95.7% for 2008 and 95.9% for 2012
(derived from USDA-NASS-RDD Spatial Analysis Research Section, 2016), the product would have an expected 2008-2012 change accuracy of
0.957%0.959 = .918 or 91.8%. This overall error rate (8.2%) is approximately 3.5 times larger than the overall error (2.3%) found for Lark et al.

above.
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